This is a reminder of the issue:

entry=0; entry<valuesSet.length; entry++)

(valuesSet[entry]!="ALREADY PROCESSED")

This would be the point in the Staircase class in which it attempts to
(startToFinish(valuesSet[entry])) check for boolean =true

subsetEntry++;

.out.println(valuesSet[entry] " Subset: " subsetEntry

3

.
This would invoke the stanTo:in‘a‘h method and it would create a new instance of the Direction class

Y
\

startToFinish(valuesSet)
Direction d Direction(valuesSet, matrix);

d.successfulFinish;|

|)
In the constructor Direction it woul call both scenarios

Direction(valuesSet, [I[] matrix)

.valuesSet=valuesSet;
.matrix-matrix;|

Bath set the boolean for
successfulFinish and it will be

movesAlternateDownRightY);
movesAlternateRightDown(’); overwritten. So, the value in method will
always be from the last method

One possible solution has occurred. And unfortunately, since it was not a
technique not used in my coding before, it has taken a while to realise this.
Constructor overloading.

| can then separate out the two methods into separate constructors.

Here is how | managed to perform the operation, it required lots of small
changes.

But fortunately it functioned, which means | can perform this challenge
knowing that end user will get some results in event that available memory
elapses...

entry=0; entry<valuesSet.length; entry++)

(valuesSet[entry]!="ALREADY PROCESSED")

There is now a unique method for alternation Down => Right => Down => Right

This would be the point in the Staircase class in which it attempts to check for boolean =true

(startToFinishDownRight(valuesSet[entry]))

subsetEntry++;

.out.println{valuesSet[entry] et: subsetEntry at cycle number

This would invoke the startToFinishDownRight method and it would create a new instance of the Direction

startToFinishDownRight(valuesSet)

Direction d Direction(valuesSet, matrix, "DownRight™); Also note the order of the
arguments differ in order to
PR call correspondng constructor
d.successfulFinish; containing

maoveAlternateDownRight()

Directfion(valuesSet, [1[] matrix, alternateDownRight)

.valuesSet=valuesSet;

.matrix ma‘tr‘ix; In the constructor Direction it would call OMLY one method
movesAlternateDownRight()

So there is no longer case of value being overwritten

movesAlternateDownRight(); boalean successfulFinish

entry=2; entry<valuesSet.length; entry++)

(valuesSet[entry]!="ALREADY PROCESSED")

o There is now a unigue method for alternation Right => Down => Right => Down

This would be the point in the Staircase class in which it attempts to check for boolean =true

(startToFinishRightDown(valuesSet[entry]))

subsetEntry++;

Subset:| " + subsetEntry / number

.out.println(valuesSet[entry]

This would invoke the startToFinishRightDown method and it would create a new instance of the Direction

]

startToFinishRightDown(valuesSet)

Direction(valuesSet, "RightDown", matrix);

Direction d|

d.successfulFinish;
? Also note the order of the
arguments differ in order to

call correspondng constructor
containing
moveAlternateRightDown()

Direction(valuesSet, alternateRightDown, [1[] matrix)

.valuesSet=valuesSet;
.matrix=matrix;

In the constructor Direction it would call ONLY one method

movesAlternateRightDown().

movesAlternateRightDown(); So there is no longer case of value being overwritten

Now, | get correct outputs at end execution:

***********SOLUTIO NS************

2,1,6,2,1,1 Subset: 1 Alternating RIGHT => DOWN => RIGHT.......

5,1,3,2,1,1 Subset: 2 Alternating RIGHT => DOWN => RIGHT.......

1,1,7,2,1,1 Subset: 3 Alternating RIGHT => DOWN => RIGHT.......

3,1,5,2,1,1 Subset: 4 Alternating RIGHT => DOWN => RIGHT.......

4,1,4,2,1,1 Subset: 5 Alternating RIGHT => DOWN => RIGHT.......

| also get the following identical outcomes during its main execution:

2,1,6,2,1,1 (Alternating RIGHT => DOWN => RIGHT.......)
5,1,3,2,1,1 (Alternating RIGHT => DOWN => RIGHT.......)
1,1,7,2,1,1 (Alternating RIGHT => DOWN => RIGHT.......)
3,1,5,2,1,1 (Alternating RIGHT => DOWN => RIGHT.......)

4,1,4,2,1,1 (Alternating RIGHT => DOWN => RIGHT.......)

Subset: 1 at cycle number
Subset: 2 at cycle number
Subset: 3 at cycle number
Subset: 4 at cycle number

Subset: 5 at cycle number

: 5005000

: 5005000

: 5005000

: 5005000

: 5005000

